


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, basic tasks, data types    
3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out  
4 Data assimilation and preparation   
5 Data reduction  and notion of similarity and distance   
6 Visual perception and cognition 

7 Visual design and aesthetics Project #1 due 
8 Statistics foundations Project #2 out 
9 Data mining techniques: clusters, text, patterns, classifiers   

10 Data mining techniques: clusters, text, patterns, classifiers   
11 Computer graphics and volume rendering   
12 Techniques to visualize spatial (3D) data Project #2 due 
13 Scientific and medical visualization Project #3 out 
14 Scientific and medical visualization   
15 Midterm #1 
16 High-dimensional data, dimensionality reduction Project #3 due 
17 Big data: data reduction, summarization 
18 Correlation and causal modeling   
19 Principles of interaction   
20 Visual analytics and the visual sense making process  Final project proposal due 
21 Evaluation and user studies   
22 Visualization of time-varying and time-series data 
23 Visualization of streaming data   
24 Visualization of graph data Final Project preliminary report due 
25 Visualization of text data   
26 Midterm #2   
27 Data journalism   

Final project presentations Final Project slides and final report due 



Data Reduction 



Because… 

 need to reduce the data so they can be feasibly stored  

 need to reduce the data so a mining algorithm can be feasibly run 

 

What else could we do  

 buy more storage 

 buy more computers or faster ones 

 develop more efficient algorithms (look beyond O-notation) 

 

However, in practice, all of this is happening at the same time 

 unfortunately, the growth of data and complexities is always faster 

 and so, data reduction will always be important  



Reduce the number of data items (samples): 
 random sampling 

 stratified sampling  

 

Reduce the number of attributes (dimensions):  
 dimension reduction by transformation 

 dimension reduction by elimination 

 

Usually do both  

 

Utmost goal 
 keep the gist of the data 

 only throw away what is redundant or superfluous 

 it’s a one way street – once it’s gone, it’s gone 

 

 

 



Sampling 

 random 

 stratified  

  

 

 

Data summarization 

 binning (already discussed) 

 clustering (see a future lecture) 

 dimension reduction (see next lecture) 



The goal 

 pick a representative subset of the data 

 

Random sampling 

 pick sample points at random 

 will work if the points are distributed                                               

uniformly 

 this is usually not the case 

 outliers will likely be missed 

 so the sample will not be representative  

 

 

 



Pick the samples according to some knowledge of the data 

distribution 

 create a binning of some sort (outliers will form bins as well) 

 also called strata (stratified sampling) 

 the size of each bin represents its percentage in the population 

 it guides the number of samples – bigger bins get more samples 

 

sampling rate ~ bin height sampling rate ~ cluster size 



Estimate the statistical properties of a distribution 

 then sample the distribution according to this distribution 

 define the importance  

sample in high slopes 

sample according to a user-defined function sample in high densities 



Easy way to making your own sampling algorithm 

 find the cumulative distribution function (CDF) of your desired 

probability density function (PDF) 

𝐹 𝑥 =  𝑓 𝑡 𝑑𝑡
𝑥

−∞

 

 if f(x) has an inverse then we can use the inversion method to 

create a sampling method 

 

 

 

 

 generate a random u-value between [0.1] and look up the x-value 

 region with higher f(x) have a steeper CDF and get sampled more  

 

 



u 



Good candidates for elimination are redundant data 

 

 

 

 

 

 

 

 

 

 how many cans of ravioli will you buy? 

 

 

 



Eliminate redundant attributes 

 eliminate correlated attributes 

‒ km vs. miles 

‒ a + b + c = d  can eliminate ‘c’ (or ‘a’ or ‘b’) 

 

Eliminate redundant data 

 cluster the data with small ranges 

 only keep the cluster centroids 

 store size of clusters along to keep importance 



Probabilities 

 k/i for the ith sample to go into the reservoir 

 1/k · k/i = 1/i for the jth reservoir element to be replaced 

 k/n for all elements in the reservoir after n has been reached 

 can be shown via induction  

A good algorithm to use for streaming data when n is growing  



Used in the CURE high-dimensional clustering algorithm 
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering 

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998 

 

Algorithm 
 initialize the point set S to empty 

 pick the point farthest from the                                                                     
mean as the first point for S  

 then iteratively pick points that are                                                         
furthest from the points in S collected so far                                                             

 

Complexity is O(m·n2) 
 n is the total number of points, m is the number of desired points 

 can find arbitrarily shaped clusters and preserve outliers, too  

 need some good data structures to run efficiently: kd-tree, heap  



Can you “hallucinate” or “invent” realistic data? 

 

And if so, how would you go about this?   





Strategy to artificially synthesize new data from existing data 

 go from small data to big data 

  



Important topic in deep learning 

 

Common techniques are (for images) 

 rotations 

 translations 

 zooms 

 flips 

 color perturbations 

 crops 

 add noise by jittering 



Definition from dictionary 

 act nervously 

 "an anxious student who jittered at any provocation“ 

 

 

 

 

 

 

 

 

 

 small random noise about a steady signal 

Jitter (noise) 



Generate new samples according to the data distributions 
 cluster the data (outliers will form clusters as well) 

 the size of each cluster represents its percentage in the population 

 randomize new samples – bigger clusters get more samples 

 add a small randomized value to either the mean or an existing 
sample 

 do this for every dimension of the chosen mean or sample 

sampling rate ~ bin height augmentation rate ~ cluster size 





Keep a representative number of samples: 

 pick one of each  

 or maybe a few more depending on importance  



You are faced with collections of many different data  

 they are usually not nicely organized                                                      

like this: 

 

 

 but more like this: 



Are all of these items pants? 

 

 

 

 

 

 

 

 

 need a measure of similarity 

 it’s a distance measure in high-dimensional feature space 



We did not consider color, texture, size, etc… 
 this would have brought more differentiation (blue vs. tan pants) 

 the more features, the better the differentiation  

ornateness 

length 



Measuring similarity can be difficult  



needs to be  
accurately measured   

quantize each person into a vector 

each vector element is a feature measurement 

compare the vectors in terms of similarity 
similarity is also called a distance function 



Pant:  

<length, ornateness, color> 

 

Food delivery customer:  

<type-pizza, type-salad, type-drink> 

 

Examples: 

 pants: <long, plain, tan>, <short, ornate, blue>, … 

       expressed in numbers: <30”, 1, 2>, <15”, 2, 5> 

 

 food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, … 

       expressed in numbers: <1, 1, 0>, <1, 1, 3> 

 



Manhattan distance 

 

 

 

 

 

Euclidian distance 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Pearson’s Correlation = correlation similarity 
mean across all 

variable values for 

data items x, y 

 

e.g. the “average 

looking” pair of 

pants or shoes 



Correlation distance is invariant to addition of a constant 

 subtracts out by construction 

 green and blue curve have correlation of 1 

 but cosine similarity is < 1 

 correlated vectors just vary in                                                                 

the same way 

 cosine similarity is stricter 

 

Both correlation and cosine                                                                       

similarity are invariant to                                            

multiplication with a constant 

 invariant to scaling 

 green = blue + 0.1 



What’s the Jaccard similarity of the two baskets A and B? 



This process is called clustering 

 and in contrast to a real store, we can make the computer do it 

for us 



Note:  

 in data mining similarity and distance are the same thing 

 so we will use these terms interchangeably  

ornateness 

length 

Clustering = 

grouping of 

similar items  

(as determined 

by the distance 

function) 



A cluster is a group of objects that are similar 

 and dissimilar from other groups of objects at the same time 

 

We need an objective function to capture this mathematically  

 the computer will evaluate this function within an algorithm 

 one such function is the mean-squared error (MSE) 

 and the objective is to minimize the MSE 

 

It’s not that easy in practice 

 there is only one global minimum 

 but often there are many local minima 

 need to find the global minimum  

 

 

 



 

 

 

 

 

 

 

In this case 

 n=12 (blue points) 

 k=2 (red points, the computed centroids) 

 distance metric used: Euclidian 

 minimization seems to be achieved 
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1. Decide on a value for k 

 

2. Initialize the k cluster centers (randomly, if necessary) 

 

3. Decide the class memberships of the N objects by 
assigning them to the nearest cluster center 

 

4. Re-estimate the k cluster centers, by assuming the 
memberships found above are correct 

 

5. If none of the N objects changed membership in the last 
iteration, exit. Otherwise goto 3 

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside 
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K-means Clustering: Step 1 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 2 
Algorithm: k-means, Distance Metric: Euclidean Distance 
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K-means Clustering: Step 3 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 
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K-means Clustering: Step 4 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 5 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 
k3 



Strengths:  
 relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t  is # iterations. Normally, k, t << n. 

 simple to code 

 

Weaknesses: 
 need to specify k in advance which is often unknown 

 find the best k by trying many different ones and 
picking the one with the lowest error 

 often terminates at a local optimum 

 the global optimum may be found by trying many 
times and using the best result 

 



1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6 



Is there a principled way we can know when to stop looking? 

Yes… 

 we can plot the objective function values for k equals 1 to 6… 

 then check for a flattening of the curve 

 

 

 

 

 

 

 

 the abrupt change at k = 2 is highly suggestive of two clusters  

 this technique is known as “knee finding” or “elbow finding” 

tangent at k=2 


