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Topic
Intro, schedule, and logistics
Applications of visual analytics, basic tasks, data types
Introduction to D3, basic vis techniques for non-spatial data
Data assimilation and preparation
Data reduction and notion of similarity and distance
Visual perception and cognition

Visual design and aesthetics

Statistics foundations

Data mining techniques: clusters, text, patterns, classifiers
Data mining techniques: clusters, text, patterns, classifiers
Computer graphics and volume rendering
Techniques to visualize spatial (3D) data

Scientific and medical visualization

Scientific and medical visualization

Midterm #1

High-dimensional data, dimensionality reduction
Big data: data reduction, summarization

Correlation and causal modeling

Principles of interaction

Visual analytics and the visual sense making process
Evaluation and user studies

Visualization of time-varying and time-series data
Visualization of streaming data

Visualization of graph data

Visualization of text data

Midterm #2

Data journalism

Final project presentations

Projects

Project #1 out

Project #1 due
Project #2 out

Project #2 due

Project #3 out

Project #3 due

Final project proposal due

Final Project preliminary report due

Final Project slides and final report due



TODAY'S THEME

Data Reduction



DATA REDUCTION — WHY?

Because...
= need to reduce the data so they can be feasibly stored
= need to reduce the data so a mining algorithm can be feasibly run

What else could we do
= buy more storage
=  buy more computers or faster ones
= develop more efficient algorithms (look beyond O-notation)

However, in practice, all of this is happening at the same time
= unfortunately, the growth of data and complexities is always faster
= and so, data reduction will always be important



DATA REDUCTION — HOW?

Reduce the number of data items (samples):
= random sampling
= stratified sampling

Reduce the number of attributes (dimensions):
= dimension reduction by transformation
= dimension reduction by elimination

Usually do both

Utmost goal
= keep the gist of the data
= only throw away what is redundant or superfluous
= |t's a one way street — once it's gone, it's gone



DATA REDUCTION

Sampling
=  random
= stratified

Data summarization
= binning (already discussed)
= clustering (see a future lecture)
= dimension reduction (see next lecture)



SAMPLING

The goal

pick a representative subset of the data

Random sampling

pick sample points at random

will work if the points are distributed
uniformly

this is usually not the case
outliers will likely be missed
so the sample will not be representative

Population

Sample

Individual




ADAPTIVE SAMPLING

Pick the samples according to some knowledge of the data
distribution
= create a binning of some sort (outliers will form bins as well)
= also called strata (stratified sampling)
= the size of each bin represents its percentage in the population
» it guides the number of samples — bigger bins get more samples
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IMPORTANCE SAMPLING

Estimate the statistical properties of a distribution
= then sample the distribution according to this distribution
= define the importance
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THE INVERSION METHOD

Easy way to making your own sampling algorithm

= find the cumulative distribution function (CDF) of your desired
probability density function (PDF)

Fx) = j F(Odt

= if f(x) has an inverse then we can use the inversion method to
create a sampling method

Probability
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= generate a random u-value between [0.1] and look up the x-value
= region with higher f(x) have a steeper CDF and get sampled more



INVERSION METHOD EXAMPLE
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REDUNDANCY SAMPLING

Good candidates for elimination are redundant data
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= how many cans of ravioli will you buy?



REDUNDANCY SAMPLING

Eliminate redundant attributes
= eliminate correlated attributes
— km vs. miles
—a+b+c=d-=> can eliminate 'c’ (or ‘a’ or 'b’)

Eliminate redundant data
» cluster the data with small ranges
= only keep the cluster centroids
= store size of clusters along to keep importance



RESERVOIR SAMPLING

/* .

S has items to sample, R will contain the result samples _--

*/
ReservoirSample(s[1..n], R[1..k])
// fill the reservoir array
for i =1 to k
R[1] := S[i]

P=n/(k+1) <

reservoir (142418 17[21 19|

n >

// replace elements with gradually decreasing probability
for 1 = k+1 to n
j := random(1, i) // important: inclusive range
if j <=k
R[3] := S[i]

Probabilities
= k/ifor the it sample to go into the reservoir
= 1/k - k/i = 1/i for the jt reservoir element to be replaced
= k/n for all elements in the reservoir after n has been reached
= can be shown via induction

A good algorithm to use for streaming data when n is growing



SAMPLING OF WELL-SCATTERED POINTS

Used in the CURE high-dimensional clustering algorithm

= S.Guha, R. Rajeey, and K. Shim. "CURE: an efficient clustering
algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998

Algorithm G’ ©
= jnitialize the point set S to empty o, O
= pick the point farthest from the et ® e @0
mean as the first point for S © . .o
= then iteratively pick points that are @
furthest from the points in S collected so far ©

Complexity is O(m-n?)
= nis the total number of points, m is the number of desired points
= can find arbitrarily shaped clusters and preserve outliers, too
= need some good data structures to run efficiently: kd-tree, heap



WHAT'S WHEN YOUR DATA IS TOO SMALL

Can you “hallucinate” or “invent” realistic data?

And if so, how would you go about this?



How TO HALLUCINATE MORE DATA...



DATA AUGMENTATION

Strategy to artificially synthesize new data from existing data
= go from small data to big data




DATA AUGMENTATION IN

MACHINE LEARNING

Important topic in deep learning

Common techniques are (for images)
= rotations
= translations

= zooms

= flips

= color perturbations
= Crops

= add noise by jittering




WHAT'S JITTERING?

Definition from dictionary
= act nervously
= "an anxious student who jittered at any provocation”

Phase and phase jitter

——— Jitter (noise)

= small random noise about a steady signal



DATA AUGMENTATION FOR

VISUALIZATION & VISUAL ANALYTICS

Generate new samples according to the data distributions
= cluster the data (outliers will form clusters as well)
= the size of each cluster represents its percentage in the population
= randomize new samples — bigger clusters get more samples

» add a small randomized value to either the mean or an existing
sample

= do this for every dimension of the chosen mean or sample
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SAMPLING
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SAMPLING PRINCIPLES

Keep a representative number of samples:
= pick one of each
= or maybe a few more depending on importance




How TO PICK?

You are faced with collections of many different data

= they are usually not nicely organized
like this:

=  but more like this:

T i




MEASURE OF SIMILARITY

Are all of these items pants?

= need a measure of similarity
= |t's a distance measure in high-dimensional feature space



FEATURE SPACE

N
ornateness

length

We did not consider color, texture, size, etc...
= this would have brought more differentiation (blue vs. tan pants)
= the more features, the better the differentiation



How MANY FEATURES DO WE NEED?

Measuring similarity can be difficult




BACK TO SIMILARITY FUNCTIONS

needs to be
accurately measured

quantize each person into a vector
each vector element is a feature measurement
compare the vectors in terms of similarity
similarity is also called a distance function



DATA VECTORS

Pant:
<length, ornateness, color>

Food delivery customer:
<type-pizza, type-salad, type-drink>

Examples:
» pants: <long, plain, tan>, <short, ornate, blue>, ...
expressed in numbers: <30% 1, 2>, <15 2, 5>

= food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, ...
expressed in numbers: <1, 1, 0>, <1, 1, 3>



METRIC DISTANCES

Manhattan distance s
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COSINE SIMILARITY

1 <a7 b>
[a|[[|6]

dist(a,b ) = cos

how is this related to correlation?

/ . . .. . mean r I
Pearson’s Correlation = correlation similarity ean across @
variable values for

// data items x, y

Ziza(®i — T)(yi — 7) e.g. the “average
\/E'Ll[fﬂi — i}g\/ﬁzl[yi —4)?  looking” pair of

pants or shoes

=Ty =




CORRELATION VS. COSINE DISTANCE

Correlation distance is invariant to addition of a constant

= subtracts out by construction

= green and blue curve have correlation of 1

»  but cosine similarity is < 1

= correlated vectors just vary in
the same way

= cosine similarity is stricter

Both correlation and cosine

similarity are invariant to

multiplication with a constant
= Invariant to scaling

0.6

0.5

0.4

0.3

0.2

0.1

0.0

—&a

1 1 1 1 1 I
0 0.5 1.0 15 2.0 25 3.0 35 4.0

green = blue + 0.1



JACCARD DISTANCE
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What's the Jaccard similarity of the two baskets A and B?



ORGANIZING THE SHELF

This process is called clustering

= and in contrast to a real store, we can make the computer do it
for us



WHAT IS CLUSTERING?

Note:

= in data mining similarity and distance are the same thing
= 5o we will use these terms interchangeably

A 7 Clustering =
grouping of
similar items
(as determined
by the distance
function)

ornateness




WHAT IS A GOOD CLUSTER?

A cluster is a group of objects that are similar
= and dissimilar from other groups of objects at the same time

We need an objective function to capture this mathematically
= the computer will evaluate this function within an algorithm
= one such function is the mean-squared error (MSE)
= and the objective is to minimize the MSE

)
It's not that easy in practice / ‘\ N 0
= there is only one global minimum J/A\ / Y \\ N / \\
= but often there are many local minima o o \J \

= need to find the global minimum

O Local extreme
® Global extreme



OBJECTIVE — MINIMIZE SQUARED ERROR

number of clusters number of cases
centroid for clusterj

objective function <~ [ = Z Z ‘ 4) C/

j=1i=1

Distance funu:tmn

In this case
= n=12 (blue points)
» k=2 (red points, the computed centroids)
» distance metric used: Euclidian
=  minimization seems to be achieved
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THE K-MEANS CLUSTERING ALGORITHM

1. Decide on a value for k
2. Initialize the k cluster centers (randomly, if necessary)

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct

5. If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside



K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance
)




K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-MEANS ALGORITHM — COMMENTS

Strengths:

= relatively efficient. O(tkn), where n is # objects, k is #
clusters, and t is # iterations. Normally, k, t << n.

= simple to code

Weaknesses:
» need to specify k in advance which is often unknown

» find the best k by trying many different ones and
picking the one with the lowest error

= often terminates at a local optimum

» the global optimum may be found by trying many
times and using the best result



How CAN WE FIND THE BEST K?
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k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6

" WE HAVE A

WINNER



HoOw ABOUT K=27%

Is there a principled way we can know when to stop looking?

Yes...
= we can plot the objective function values for k equals 1 to 6...
= then check for a flattening of the curve
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= the abrupt change at k = 2 is highly suggestive of two clusters
= this technique is known as “knee finding” or “elbow finding”



