


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Applications of visual analytics, basic tasks, data types    
3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out  
4 Data assimilation and preparation   
5 Data reduction  and notion of similarity and distance   
6 Visual perception and cognition 

7 Visual design and aesthetics Project #1 due 
8 Statistics foundations Project #2 out 
9 Data mining techniques: clusters, text, patterns, classifiers   

10 Data mining techniques: clusters, text, patterns, classifiers   
11 Computer graphics and volume rendering   
12 Techniques to visualize spatial (3D) data Project #2 due 
13 Scientific and medical visualization Project #3 out 
14 Scientific and medical visualization   
15 Midterm #1 
16 High-dimensional data, dimensionality reduction Project #3 due 
17 Big data: data reduction, summarization 
18 Correlation and causal modeling   
19 Principles of interaction   
20 Visual analytics and the visual sense making process  Final project proposal due 
21 Evaluation and user studies   
22 Visualization of time-varying and time-series data 
23 Visualization of streaming data   
24 Visualization of graph data Final Project preliminary report due 
25 Visualization of text data   
26 Midterm #2   
27 Data journalism   

Final project presentations Final Project slides and final report due 



Data Reduction 



Because… 

 need to reduce the data so they can be feasibly stored  

 need to reduce the data so a mining algorithm can be feasibly run 

 

What else could we do  

 buy more storage 

 buy more computers or faster ones 

 develop more efficient algorithms (look beyond O-notation) 

 

However, in practice, all of this is happening at the same time 

 unfortunately, the growth of data and complexities is always faster 

 and so, data reduction will always be important  



Reduce the number of data items (samples): 
 random sampling 

 stratified sampling  

 

Reduce the number of attributes (dimensions):  
 dimension reduction by transformation 

 dimension reduction by elimination 

 

Usually do both  

 

Utmost goal 
 keep the gist of the data 

 only throw away what is redundant or superfluous 

 it’s a one way street – once it’s gone, it’s gone 

 

 

 



Sampling 

 random 

 stratified  

  

 

 

Data summarization 

 binning (already discussed) 

 clustering (see a future lecture) 

 dimension reduction (see next lecture) 



The goal 

 pick a representative subset of the data 

 

Random sampling 

 pick sample points at random 

 will work if the points are distributed                                               

uniformly 

 this is usually not the case 

 outliers will likely be missed 

 so the sample will not be representative  

 

 

 



Pick the samples according to some knowledge of the data 

distribution 

 create a binning of some sort (outliers will form bins as well) 

 also called strata (stratified sampling) 

 the size of each bin represents its percentage in the population 

 it guides the number of samples – bigger bins get more samples 

 

sampling rate ~ bin height sampling rate ~ cluster size 



Estimate the statistical properties of a distribution 

 then sample the distribution according to this distribution 

 define the importance  

sample in high slopes 

sample according to a user-defined function sample in high densities 



Easy way to making your own sampling algorithm 

 find the cumulative distribution function (CDF) of your desired 

probability density function (PDF) 

𝐹 𝑥 =  𝑓 𝑡 𝑑𝑡
𝑥

−∞

 

 if f(x) has an inverse then we can use the inversion method to 

create a sampling method 

 

 

 

 

 generate a random u-value between [0.1] and look up the x-value 

 region with higher f(x) have a steeper CDF and get sampled more  

 

 



u 



Good candidates for elimination are redundant data 

 

 

 

 

 

 

 

 

 

 how many cans of ravioli will you buy? 

 

 

 



Eliminate redundant attributes 

 eliminate correlated attributes 

‒ km vs. miles 

‒ a + b + c = d  can eliminate ‘c’ (or ‘a’ or ‘b’) 

 

Eliminate redundant data 

 cluster the data with small ranges 

 only keep the cluster centroids 

 store size of clusters along to keep importance 



Probabilities 

 k/i for the ith sample to go into the reservoir 

 1/k · k/i = 1/i for the jth reservoir element to be replaced 

 k/n for all elements in the reservoir after n has been reached 

 can be shown via induction  

A good algorithm to use for streaming data when n is growing  



Used in the CURE high-dimensional clustering algorithm 
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering 

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998 

 

Algorithm 
 initialize the point set S to empty 

 pick the point farthest from the                                                                     
mean as the first point for S  

 then iteratively pick points that are                                                         
furthest from the points in S collected so far                                                             

 

Complexity is O(m·n2) 
 n is the total number of points, m is the number of desired points 

 can find arbitrarily shaped clusters and preserve outliers, too  

 need some good data structures to run efficiently: kd-tree, heap  



Can you “hallucinate” or “invent” realistic data? 

 

And if so, how would you go about this?   





Strategy to artificially synthesize new data from existing data 

 go from small data to big data 

  



Important topic in deep learning 

 

Common techniques are (for images) 

 rotations 

 translations 

 zooms 

 flips 

 color perturbations 

 crops 

 add noise by jittering 



Definition from dictionary 

 act nervously 

 "an anxious student who jittered at any provocation“ 

 

 

 

 

 

 

 

 

 

 small random noise about a steady signal 

Jitter (noise) 



Generate new samples according to the data distributions 
 cluster the data (outliers will form clusters as well) 

 the size of each cluster represents its percentage in the population 

 randomize new samples – bigger clusters get more samples 

 add a small randomized value to either the mean or an existing 
sample 

 do this for every dimension of the chosen mean or sample 

sampling rate ~ bin height augmentation rate ~ cluster size 





Keep a representative number of samples: 

 pick one of each  

 or maybe a few more depending on importance  



You are faced with collections of many different data  

 they are usually not nicely organized                                                      

like this: 

 

 

 but more like this: 



Are all of these items pants? 

 

 

 

 

 

 

 

 

 need a measure of similarity 

 it’s a distance measure in high-dimensional feature space 



We did not consider color, texture, size, etc… 
 this would have brought more differentiation (blue vs. tan pants) 

 the more features, the better the differentiation  

ornateness 

length 



Measuring similarity can be difficult  



needs to be  
accurately measured   

quantize each person into a vector 

each vector element is a feature measurement 

compare the vectors in terms of similarity 
similarity is also called a distance function 



Pant:  

<length, ornateness, color> 

 

Food delivery customer:  

<type-pizza, type-salad, type-drink> 

 

Examples: 

 pants: <long, plain, tan>, <short, ornate, blue>, … 

       expressed in numbers: <30”, 1, 2>, <15”, 2, 5> 

 

 food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, … 

       expressed in numbers: <1, 1, 0>, <1, 1, 3> 

 



Manhattan distance 

 

 

 

 

 

Euclidian distance 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Pearson’s Correlation = correlation similarity 
mean across all 

variable values for 

data items x, y 

 

e.g. the “average 

looking” pair of 

pants or shoes 



Correlation distance is invariant to addition of a constant 

 subtracts out by construction 

 green and blue curve have correlation of 1 

 but cosine similarity is < 1 

 correlated vectors just vary in                                                                 

the same way 

 cosine similarity is stricter 

 

Both correlation and cosine                                                                       

similarity are invariant to                                            

multiplication with a constant 

 invariant to scaling 

 green = blue + 0.1 



What’s the Jaccard similarity of the two baskets A and B? 



This process is called clustering 

 and in contrast to a real store, we can make the computer do it 

for us 



Note:  

 in data mining similarity and distance are the same thing 

 so we will use these terms interchangeably  

ornateness 

length 

Clustering = 

grouping of 

similar items  

(as determined 

by the distance 

function) 



A cluster is a group of objects that are similar 

 and dissimilar from other groups of objects at the same time 

 

We need an objective function to capture this mathematically  

 the computer will evaluate this function within an algorithm 

 one such function is the mean-squared error (MSE) 

 and the objective is to minimize the MSE 

 

It’s not that easy in practice 

 there is only one global minimum 

 but often there are many local minima 

 need to find the global minimum  

 

 

 



 

 

 

 

 

 

 

In this case 

 n=12 (blue points) 

 k=2 (red points, the computed centroids) 

 distance metric used: Euclidian 

 minimization seems to be achieved 
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1. Decide on a value for k 

 

2. Initialize the k cluster centers (randomly, if necessary) 

 

3. Decide the class memberships of the N objects by 
assigning them to the nearest cluster center 

 

4. Re-estimate the k cluster centers, by assuming the 
memberships found above are correct 

 

5. If none of the N objects changed membership in the last 
iteration, exit. Otherwise goto 3 

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside 
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K-means Clustering: Step 1 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 2 
Algorithm: k-means, Distance Metric: Euclidean Distance 
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K-means Clustering: Step 3 
Algorithm: k-means, Distance Metric: Euclidean Distance 
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K-means Clustering: Step 4 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 
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K-means Clustering: Step 5 
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 
k3 



Strengths:  
 relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t  is # iterations. Normally, k, t << n. 

 simple to code 

 

Weaknesses: 
 need to specify k in advance which is often unknown 

 find the best k by trying many different ones and 
picking the one with the lowest error 

 often terminates at a local optimum 

 the global optimum may be found by trying many 
times and using the best result 

 



1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6 



Is there a principled way we can know when to stop looking? 

Yes… 

 we can plot the objective function values for k equals 1 to 6… 

 then check for a flattening of the curve 

 

 

 

 

 

 

 

 the abrupt change at k = 2 is highly suggestive of two clusters  

 this technique is known as “knee finding” or “elbow finding” 

tangent at k=2 


