

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Applications of visual analytics, basic tasks, data types
3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out
4 Data assimilation and preparation
5 Data reduction and notion of similarity and distance
6 Visual perception and cognition

7 Visual design and aesthetics Project #1 due
8 Statistics foundations Project #2 out
9 Data mining techniques: clusters, text, patterns, classifiers

10 Data mining techniques: clusters, text, patterns, classifiers
11 Computer graphics and volume rendering
12 Techniques to visualize spatial (3D) data Project #2 due
13 Scientific and medical visualization Project #3 out
14 Scientific and medical visualization
15 Midterm #1
16 High-dimensional data, dimensionality reduction Project #3 due
17 Big data: data reduction, summarization
18 Correlation and causal modeling
19 Principles of interaction
20 Visual analytics and the visual sense making process Final project proposal due
21 Evaluation and user studies
22 Visualization of time-varying and time-series data
23 Visualization of streaming data
24 Visualization of graph data Final Project preliminary report due
25 Visualization of text data
26 Midterm #2
27 Data journalism

Final project presentations Final Project slides and final report due

Data Reduction

Because…

 need to reduce the data so they can be feasibly stored

 need to reduce the data so a mining algorithm can be feasibly run

What else could we do

 buy more storage

 buy more computers or faster ones

 develop more efficient algorithms (look beyond O-notation)

However, in practice, all of this is happening at the same time

 unfortunately, the growth of data and complexities is always faster

 and so, data reduction will always be important

Reduce the number of data items (samples):
 random sampling

 stratified sampling

Reduce the number of attributes (dimensions):
 dimension reduction by transformation

 dimension reduction by elimination

Usually do both

Utmost goal
 keep the gist of the data

 only throw away what is redundant or superfluous

 it’s a one way street – once it’s gone, it’s gone

Sampling

 random

 stratified

Data summarization

 binning (already discussed)

 clustering (see a future lecture)

 dimension reduction (see next lecture)

The goal

 pick a representative subset of the data

Random sampling

 pick sample points at random

 will work if the points are distributed

uniformly

 this is usually not the case

 outliers will likely be missed

 so the sample will not be representative

Pick the samples according to some knowledge of the data

distribution

 create a binning of some sort (outliers will form bins as well)

 also called strata (stratified sampling)

 the size of each bin represents its percentage in the population

 it guides the number of samples – bigger bins get more samples

sampling rate ~ bin height sampling rate ~ cluster size

Estimate the statistical properties of a distribution

 then sample the distribution according to this distribution

 define the importance

sample in high slopes

sample according to a user-defined function sample in high densities

Easy way to making your own sampling algorithm

 find the cumulative distribution function (CDF) of your desired

probability density function (PDF)

𝐹 𝑥 = 𝑓 𝑡 𝑑𝑡
𝑥

−∞

 if f(x) has an inverse then we can use the inversion method to

create a sampling method

 generate a random u-value between [0.1] and look up the x-value

 region with higher f(x) have a steeper CDF and get sampled more

u

Good candidates for elimination are redundant data

 how many cans of ravioli will you buy?

Eliminate redundant attributes

 eliminate correlated attributes

‒ km vs. miles

‒ a + b + c = d can eliminate ‘c’ (or ‘a’ or ‘b’)

Eliminate redundant data

 cluster the data with small ranges

 only keep the cluster centroids

 store size of clusters along to keep importance

Probabilities

 k/i for the ith sample to go into the reservoir

 1/k · k/i = 1/i for the jth reservoir element to be replaced

 k/n for all elements in the reservoir after n has been reached

 can be shown via induction

A good algorithm to use for streaming data when n is growing

Used in the CURE high-dimensional clustering algorithm
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998

Algorithm
 initialize the point set S to empty

 pick the point farthest from the
mean as the first point for S

 then iteratively pick points that are
furthest from the points in S collected so far

Complexity is O(m·n2)
 n is the total number of points, m is the number of desired points

 can find arbitrarily shaped clusters and preserve outliers, too

 need some good data structures to run efficiently: kd-tree, heap

Can you “hallucinate” or “invent” realistic data?

And if so, how would you go about this?

Strategy to artificially synthesize new data from existing data

 go from small data to big data

Important topic in deep learning

Common techniques are (for images)

 rotations

 translations

 zooms

 flips

 color perturbations

 crops

 add noise by jittering

Definition from dictionary

 act nervously

 "an anxious student who jittered at any provocation“

 small random noise about a steady signal

Jitter (noise)

Generate new samples according to the data distributions
 cluster the data (outliers will form clusters as well)

 the size of each cluster represents its percentage in the population

 randomize new samples – bigger clusters get more samples

 add a small randomized value to either the mean or an existing
sample

 do this for every dimension of the chosen mean or sample

sampling rate ~ bin height augmentation rate ~ cluster size

Keep a representative number of samples:

 pick one of each

 or maybe a few more depending on importance

You are faced with collections of many different data

 they are usually not nicely organized

like this:

 but more like this:

Are all of these items pants?

 need a measure of similarity

 it’s a distance measure in high-dimensional feature space

We did not consider color, texture, size, etc…
 this would have brought more differentiation (blue vs. tan pants)

 the more features, the better the differentiation

ornateness

length

Measuring similarity can be difficult

needs to be
accurately measured

quantize each person into a vector

each vector element is a feature measurement

compare the vectors in terms of similarity
similarity is also called a distance function

Pant:

<length, ornateness, color>

Food delivery customer:

<type-pizza, type-salad, type-drink>

Examples:

 pants: <long, plain, tan>, <short, ornate, blue>, …

 expressed in numbers: <30”, 1, 2>, <15”, 2, 5>

 food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, …

 expressed in numbers: <1, 1, 0>, <1, 1, 3>

Manhattan distance

Euclidian distance

Pearson’s Correlation = correlation similarity
mean across all

variable values for

data items x, y

e.g. the “average

looking” pair of

pants or shoes

Correlation distance is invariant to addition of a constant

 subtracts out by construction

 green and blue curve have correlation of 1

 but cosine similarity is < 1

 correlated vectors just vary in

the same way

 cosine similarity is stricter

Both correlation and cosine

similarity are invariant to

multiplication with a constant

 invariant to scaling

 green = blue + 0.1

What’s the Jaccard similarity of the two baskets A and B?

This process is called clustering

 and in contrast to a real store, we can make the computer do it

for us

Note:

 in data mining similarity and distance are the same thing

 so we will use these terms interchangeably

ornateness

length

Clustering =

grouping of

similar items

(as determined

by the distance

function)

A cluster is a group of objects that are similar

 and dissimilar from other groups of objects at the same time

We need an objective function to capture this mathematically

 the computer will evaluate this function within an algorithm

 one such function is the mean-squared error (MSE)

 and the objective is to minimize the MSE

It’s not that easy in practice

 there is only one global minimum

 but often there are many local minima

 need to find the global minimum

In this case

 n=12 (blue points)

 k=2 (red points, the computed centroids)

 distance metric used: Euclidian

 minimization seems to be achieved

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

1. Decide on a value for k

2. Initialize the k cluster centers (randomly, if necessary)

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct

5. If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 1
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 2
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 3
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 4
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

expression in condition 1

e
x
p

re
s
s
io

n
 i
n

 c
o

n
d

it
io

n
 2

K-means Clustering: Step 5
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2
k3

Strengths:
 relatively efficient: O(tkn), where n is # objects, k is #

clusters, and t is # iterations. Normally, k, t << n.

 simple to code

Weaknesses:
 need to specify k in advance which is often unknown

 find the best k by trying many different ones and
picking the one with the lowest error

 often terminates at a local optimum

 the global optimum may be found by trying many
times and using the best result

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6

Is there a principled way we can know when to stop looking?

Yes…

 we can plot the objective function values for k equals 1 to 6…

 then check for a flattening of the curve

 the abrupt change at k = 2 is highly suggestive of two clusters

 this technique is known as “knee finding” or “elbow finding”

tangent at k=2

